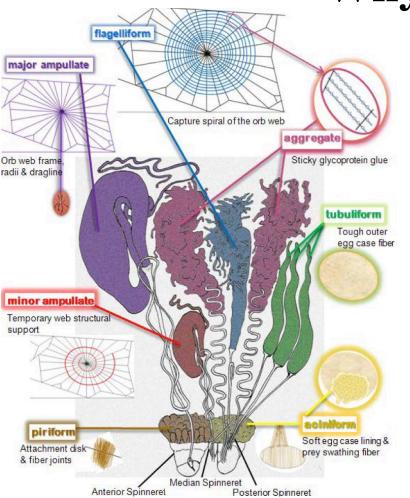
USING SYNTHETIC BIOLOGY TO PRODUCE SPIDER SILK

Why we study spider silk

- Understand protein structure/function
- Create a new biomaterial for:
- tendon and ligament repair/replacement
- drug implantation
- airbags and tire cords
- athletic gear
- military materials, e.g. parachute cords



Why Spider Silks?

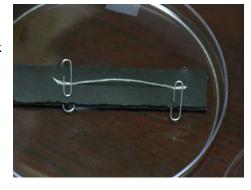
Spiders can make six types of silk with very different mechanical properties.

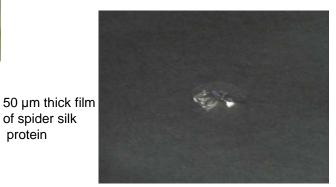
Material	Strength (N/m ²)	Elasticity (%)	Energy to Break (J/kg)
Major Ampullate Silk	4 x 10 ⁹	35	1 x 10⁵
Minor Ampullate Silk	1 x 10 ⁹	-	3 x 10⁴
Flagelliform Silk	1 x 10 ⁹	200	1 x 10⁵
Kevlar	4 x 10 ⁹	5	3 x 10 ⁴
Rubber	1 x 10 ⁶	600	8 x 10 ⁴
Tendon	1 x 10 ⁹	5	5 x 10 ³

Note the differing properties of the silks and their superiority to manmade fibers.

How to produce large amounts of spider silk

System	Protein Concentration	Total Protein Yield	Production Time	
Bacteria	100mg/L; 30,000L fermentor	3kg/run	2-4 months	
Goats	15g/L; 8L/day; lactation of 150 days	18kg/goat/year	1-2 years	
Alfalfa	1% of soluble protein, 10T/acre	218kg/acre/year	4-5 years	
Silkworm	5% < ? < 85%	Unlimited	2 years	


Normal (L) and transgenic (R) cocoons

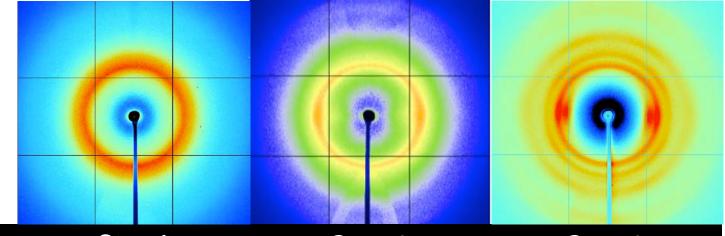


Transgenic goats

100 strands of synthetic spider silk

protein

"Bulletproof"



Properties of synthetic fibers

Sunrise Session: January 20, 2012

	Step 1	Step 2	Step 3
Diameter (microns)	68	34	28
Tensile Strength (Megapascals)	28	102	128
Elasticity (Percent)	2	19	52
Toughness (joules/meter ³)	.3	19	55

Transgenic silk worm data

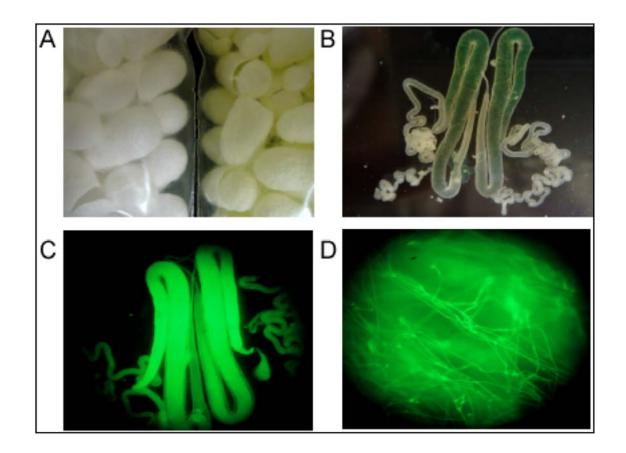


Figure 3. GFP expression in (A) eggs, (B, C) silk glands, and (D) silk fibers of transgenic silkworms.

	SILKWORM SILK (DEGUMMED)						
MECHANICAL	NON	TRANSGENIC BLEND					
PROPERTIES	TRANSGENIC Chimeric spider sill GFP			Chimeric spider silk + GFP			DRAGLINE SILK
	pnd-w1	P6- Li	ine 7			Ratio to spider silk	Nephila clavipes k
Max Stress MPa	198.0	315.3	159%	338.4	171%	45%	744.5
Max Strain %	22.0	31.8	145%	31.1	141%	102%	30.6
Toughness MJ/m ³	32.0	71.7	224%	77.2	241%	56%	138.7

Processed spider silk

Material	Extensibility	Strength	Toughness
A1S8 ₂₀	70%	.15	94
Y1S8 ₂₀	80%		62
ade materials			
Kevlar	3%	3.6	50
Carbon fiber	1%	4	25
High-tensile steel	1%	1.5	6
<u>spider silk</u>			
Dragline silk	35%	4	150
Flagelliform silk	270%	.5	150
	A1S8 ₂₀ Y1S8 ₂₀ Ade materials Kevlar Carbon fiber High-tensile steel Spider silk Dragline silk	A1S8 ₂₀ 70% Y1S8 ₂₀ 80% Ade materials Kevlar 3% Carbon fiber 1% High-tensile steel 1% Spider silk Dragline silk 35%	A1S82070%.15Y1S82080%.14ade materialsKevlar3%3.6Carbon fiber1%4High-tensile steel1%1.5spider silkDragline silk35%4

Conclusions

- The longer the GPGXX sequence the larger the elongation and the higher the poly-Ala percentage the higher the tensile strength.
- Longer proteins give both better tensile strength and elongation.
- Proper spinning conditions eliminate variation in fiber mechanical properties.
- Post-spin draw increases ß-sheet content and w/ water increases orientation leading to increased tensile strength and elongation regardless of sequence.
- Electro-spun nanofibers show increased tensile strength with decreasing fiber diameter reaching 1 Gpa (not seen in any biological fiber reconstituted in any fashion) and, in contrast to most materials, elongation does not decrease leading to possible "super fibers".
- 3-5% spider silk co-spun with the naturally spun silkworm silk has significant effects on both tensile strength (80% increase) and elongation (50%).
- Spider silk has the highest thermal conductivity of any organic material tested.
- At low extension rates (0.5-5 mm/min), MA and MI silks have similar failure energies to aramid and UHMWPE but at high rates (5000 m/sec), both MI and MA silks significantly outperform those high performance fibers.

Simultaneous multi-fiber spinning achieved. UtahStateUniversity