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Experiments were carried out in a bench-scale bubbling fluidizing bed reactor
at 700°C, 800°C, and 900°C using subbituminous coal, hybrid poplar,
cornstover, switchgrass, and coal-biomass blends. The percentage of
biomass by weight in the mixtures studied was 0, 10, 15, 20, 25, 30, 40, and
50. Additionally, the experiment was conducted in two media: N, and CO,.

Figure 6. Yield of H, as a function of temperature, biomass, and gasification medium. Figure 7. Yield of CO as a function of temperature, biomass, and gasification medium.

~-C(100/N2 —8-P(100}N2 ~4-CP (90-10)N2 --C{100)-C02 ~+-G(100)/N2 ~8-P(100}N2 ~~GP (90-10)N2 —G{(100)-G02

.//
—— ke

700 800 200 700 800 %00

Yield of CHq (% dry weight)
Yield of CO; (% dry weight)

8
7
6
5
.
3
2
1

o

Currently, we are in the initial phase of the experiment. The results showed
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that char and liquid yields decreased with increasing temperature whereas

Figure 8. Yield of CH as a function of temperature, biomass, and gasification medium. Figure 9. Yield of CO; as a function of temperature, biomass, and gasification medium.

-

gas yield increased with increasing temperature. Also, there appeared to be
no synergistic effect of the two feedstocks on product distribution at 700°C
and 800°C.

Figure 1. Experimental setup of bubbling fluidized bed reactor unit (1-flidized bed, U The results showed that solid and liquid yields decreased with
- 2-furnance, 3-thermocouple, 4-mass flow controller, 5-jacketed air-cooled feeder tube, . . .
|ntroduct|on 6-hopper, 7- screw feeder, 8-computer, 9-heating tape, 10-hot gas filter, 11-reserwor, increasing temperature and consequently the gas and its components
12-condenser, 13-ESP, 14-AC power supply, 15-filter, 16-wet gas meter, 17-gas chromatography)

. . . (syngas) yield increased with increasing temperature.
O Currently fuels and chemicals are predominantly derived from petroleum

medium.

QO Whereas petroleum sources are greatly depleted, coal reserves are U The anticipated synergistic effects of coal-biomass co-pyrolysis and
co-gasification can potentially make coal utilization environmentally

attractive and economically competitive as a domestic energy source.

Continuation of co-pyrolysis and co-gasification studies to demonstrate

the influence of catalysts on the solid, liquid, and gas products
Figure 2. Product yield of poplar wood (wt%) as a function of pyrolysis temperature  Figt . Product yield of coal as a function of pyrolysis temperature in N; atmosphere. . . .
in N; atmosphere. distributions.
O However co-pyrolysis and co-gasification of coal and biomass has a "o "

sufficient to meet domestic demands for over 200 years at the current
consumption rate.
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O Combustion and co-firing of coal produce NO, and SO, that lead to

o
global warming and acid rains respectively. Temperare (9 e ca
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