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To demonstrate the possibility of fluorescently tagging spider silk, the F1 spider silk protein was fused to GFP. This allows us to
indirectly measure silk production rates in vivo. The GFP is fused downstream of the silk protein so that we only detect fully translated
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Spiders can produce six different types of silk, . . . . . _d'SSOIV(Ed a-nd the solu-tl-on [
each with unique mechanical properties. These Genetic DESIgn and MEtabO|lc ManlpU|at|0n - = is loaded into a modified |
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properties come from proteins that have a | Spider silk protein subunits contain only six different amino acids. Larger numbers of J— . ‘ Eolution is forced throush
| repetitive and highly complex molecular structure. || repeating subunits impart greater elasticity and strength to the fiber, but could potentially = e 2 small bore needle intoga
The silk used in this study is major ampullate || drain the cell’s tRNA pool. We have codon optimized the spider silk proteins for increased / ! coapulation  bath.  This
(dragline) silk, which is composed of R-spirals, || production, but instead of optimizing to E. coli’s ratios we reduced the number of codons - —emmE————— ) Sessooss / hoto showing the i rogess organizes  the
which impart elasticity, and R-sheets, which | | used for each amino acid, and created a construct to supplement tRNAs that recognize those =~ (i —————— / P .zm S.Iiwr""g td © 'r;t ’ p 8
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\ mino Cl eq uences the silk plasmid can put stress on the cell by exhausting the charged tRNA pools for the six amino acids used by the purification |
\| (GGYGPGAGQQGPGSQGPGSGGQQGPGGQ)GPYGPS [V silk subunits. Addition of the tRNA supplementation plasmid relieves this stress. Unearized AV Expressed first silk-GFP fusion protein from BioBrick [
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B-spirals and B -helices act like springs giving the . Agarose gel we ran to make the letter U, S, and U which  Sres™ 0 $ - / Future Goals |
silk high elasticity. give strength and stands for Utah State University (USU). The first ‘U’ ?Bz 5 51w b 5w b o smon | = Increase number of silk subunits
consists entirely of ‘F’ BioBrick units, the second ‘U’ “Spider Step” Inserts = Analyze the effect of protein size on mechanical \
consists of only ‘B’ BioBrick units and the ‘S’ is a mix of ~ Agarose gel showing spider silk genes made up of an rti \
increasing number of silk subunits. ‘B’ denotes the properties \
~|® Characterize effects of tRNA addition on silk yield \

stiffness properties to the fiber. ‘U’ has 1 elastic unit
(1E) and ‘W’ has 2 elastic units (2E). ‘F and ‘B’ are|
codon optimized based on ‘W’.

both ‘F'and ‘B".
type of tRNA optimization performed and the -
numbers indicate the number of subunit repeats. - L] Spm and test fluorescent spider silk
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