

iGEM at Utah State University

Charles Miller Department of Biological Engineering Utah State University

iGEM: International Genetically Engineered Machine Competition

Regional Jamboree - Americas West: Stanford University October 12-14, 2012

> World Championship – MIT: November 2–5, 2012

Introduction – iGEM

- International Genetically Engineered Machine (iGEM) Competition
 - Undergraduate synthetic biology competition
 - Founded in 2004 with 5 teams
 - 2011: 167 teams, 51 from US
 - 2012: 193 teams, 68 from US
- Design, build, and test simple biological systems made from standard, interchangeable biological parts-BioBricks

What is synthetic biological engineering?

An approach to engineering biology

Not what you make, but how you make it

Goal: to make biology easy to engineer

Synthetic Biological Engineering

 The design and construction of biological parts, devices, and systems

 The redesign of existing, natural biological systems for useful purposes

Fundamental principles of synthetic biological engineering

- 1. Recombinant DNA technologies
- 2. PCR
- 3. Automated sequencing
- 4. Automated DNA construction
- 5. Standards
- 6. Abstraction

BioBricks

 Standardized and easily assembled parts of DNA for the design and construction of biological systems and devices.

TECHNOLOGY ABSTRACTION

DNA TCCCTATCAGTGATAGAGATTGACATCCCTATCAGTGATAGAGATACTGAG

BioBricks

 For the iGEM competition, teams are provided a library of standardized parts (*BioBricks*) and asked to design and build genetic machines

Over 1,000 DNA standardized parts are distributed to each team from the Registry of Standard Biological Parts at MIT

USU at iGEM

2008: Bronze Medal: Efficient Systems for Monitoring Polyhydroxybutyrate (PHB) Production in Microorganisms

2009: Gold Medal: BioBricks without Borders-Secretion Systems

2010: Gold Medal: CyanoBricks- Developing Cyanobacteria as a Biological Engineering Platform

2011: Gold Medal: CyanoBricks- Expression Testing and Bioproduct Development

Student Participation: 8 High school students 31 Undergraduate students 15 Graduate students

2012 iGEM Competition

- New in 2012:
 - Regional Competitions (total 5 regions)
 - Americas East (Pittsburg): 44 teams
 - Americas West (Stanford): 24 teams
 - Asia (Hong Kong): 56 teams
 - Europe (Amsterdam): 53 teams
 - Latin America (Colombia): 16 teams
 - World Championships
 - MIT

tin America

UtahStateUniversity i CEM

ArachniColi: production and purification of spider silk proteins in *E. coli*

Team Successes

UtahState

-Gold medal
-Regional Finalist
-Won award Best Engineered BioBrick Device
-Selected to World Championships at MIT
-Won award for Best Manufacturing Project

Outline

Background

Protein Purification

Outreach,

Conclusions, Future

Work

Team Goals

Spider silk-GFP fusion protein

The First Spider Silk <u>Bi</u>oBricks Design with BioBricks

Properties of spider silk

Material	Strength (N m ⁻²)	Elongation (%)	Energy to break (J kg⁻¹)
Dragline silk	4000x10 ⁶	35	40x10 ⁴
Kevlar	4000x10 ⁶	5	3x10 ⁴
Rubber	1x10 ⁶	600	8x10 ⁴

- As strong as Kevlar, 7 times more elastic
- 5 times larger energy to break than rubber
- Biocompatible
- Biodegradable

2012 Americas West October 12th-14th Potential spider silk applications

UtahState

6

Motivation

JtahState

Problem:

- Spiders are territorial and cannibalistic so producing spider silk in 'spider farms' is not an option
- Even if you could have farms, silk collection would be difficult
- The mechanical properties of natural silk are not ideal for all applications

Solution: Create spider silk BioBricks for

expression in *E.coli*

Team goals

- Create the first spider silk BioBrick
- Create a method of purifying spider silk that is produced in *E.coli*
- Create spider silk-GFP fusion proteins for easy detection of products
- Manufacture spider silk protein in E.coli
- Manufacture spider silk fibers from protein
- Use tRNAs to optimize spider silk production

Spider silk proteins: a series of repeats

UtahState

(GGYGPGAGQQGPGSQGPGSGGQQGPGGQ)(GGYGPGAGQQGPGSQGPGSGGQQGPGGQ)GPYGPSAAAAAA W

 β -spirals and β -helices act like springs giving the silk high elasticity.

Americas West October 12th-14th

B-sheets give strength and stiffness properties to the fiber.

 β - Sheets

β - Spiral

β - Helix

Spider silk amino acid composition

Amino Acid	Count	% Composition
Glycine (G)	30	44.1
Glutamine (Q)	12	17.6
Proline (P)	10	14.7
Alanine (A)	8	11.8
Serine (S)	5	7.4
Tyrosine (Y)	3	4.4

- The silk gene uses only six of the twenty different amino acids
- 44% of the amino acids are glycine, so having enough intracellular glycine is important for production

Designing a system to produce silk

Championship A PACHARCHOL

The bacteria works hard to produce the silk
When the *E. coli* is overworked it no longer has sufficient tRNA's to make proteins it needs to survive, and product yield decreases

UtahState

Amino Acid	% Composition	Codon	Unop	otimized (W)	Fewest (F)	Balanced (B)
	11.80	GCT		25	0	0
		GCC		25	0	0
Ala (A).		GCA		25	100	100
		GCG		25	0	0
$\operatorname{Gln}(\Omega)$	17.6	CAA		33	100	100
din (d).		CAG		67	0	0
	44.1	GGT		57	100	50
chy (c):		GGC		40	0	0
diy (d).		GGA		0	0	50
		GGG		3	0	0
	14.7	ССТ		0	100	50
Pro (P)		CCC		0	0	0
FIG (F).		CCA		0	0	50
		CCG		100	0	0
	7.4	тст		0	0	40
		тсс		0	0	0
Sor (S):		TCA		0	0	0
361 (3).		TCG		0	0	0
		AGT		0	100	60
		AGC		100	0	0
Tyr (V):	4.4	TAT		100	100	100
·y·(·).		TAC		0	0	0

tRNAs

DNA construct containing the six tRNAs for enhanced spider silk expression in 'F' construct

G-Glycine (GGT codon) Q-Glutamine (CAA codon) P-Proline (CCT codon) A-Alanine (GCA codon) S- Serine (AGT codon) Y-Tyrosine (TAT codon)

	Unoptimized (W)	Fewest (F)	
	25	0	
-	25	0	
	25	100	
-	25	0	
	33	100	
	67	0	
	57	100	
	40	0	
-	0	0	
	3	0	
	0	100	
	0	0	
	0	0	
X	100	0	
	0	0	
	0	0	4
	0	0	
	0	0	
	0	100	
	100	0	1
	100	100	
	0	0	

The benefit of tRNAs

- With additional tRNAs the bacteria should be able to handle our spider silk BioBricks
- The tRNA plasmid is pSB3K3

Addition of repeating units

World Championship A RACHARCHOL

UtahState UNIVERSITY

Spider steps

ARACHNICC

MassRuler DNA ladder-

UtahState

UNIVERSITY

Linearized pSB1C3 vectors with spider silk gene insert cut out

Linearized pSB1C3 vectors with spider silk gene insert cut out

The first BioBrick Silk-GFP fusion protein

To demonstrate the possibility of fluorescently tagging spider silk, the F1 spider silk protein construct was fused to GFP

2012 Americas West October 12th-14th ARACHNICOL Spider Silk GFP fusion protein

5 µm

UtahState UNIVERSITY

IS

SILK

Coomassie blue stained SDS PAGE gel

ARACHNICOLI UtahState UNIVERSITY

First spun spider silk from BioBricks

ARACHNICOL UNIVERS

Team Successes

- First ever spider silk BioBrick parts
- First spun spider silk fiber from composite BioBrick part
- Improved His-tag for better protein purification
- First spider silk GFP fusion protein from BioBrick parts

UtahState UNIVERSITY

BioBrick parts

\$	\$	\$	Name 🜩	Туре 🜩	Description 🗢	Designer 🗢	Length 🜲
¥		w	BBa_K844000	Тад	10x-Histidine (10x-His) Tag with double stop codon (TAATAA)	Kathleen Miller	36
Y		W	BBa_K844015	Generator	lac/IPTG inducible Spider Silk 1x "F" Subunit fused to GFP	Brian Smith	1158
Y		W	BBa_K844016	Generator	Spider Silk Generator - 4x "B" Silk Construct with His Tag	Brian Smith	1116
			BBa_K844001	Coding	Spider Silk 1x 1E Subunit "U" (native sequence)	Ryan Putman	120
			BBa_K844002	Coding	Spider Silk 1x Subunit "W" (native sequence)	Federico Carlos Rodriguez	204
			BBa_K844003	Coding	Spider Silk 1x Subunit "F" (Fewest tRNA codon optimized)	Charles Barentine	204
			BBa_K844004	Coding	Spider Silk 1x Subunit "B" (Balanced tRNA codon optimized)	Andrea Halling	204
			BBa_K844005	Coding	Spider Silk 1x 1E Subunit "U" with Met (ATG) start codon	Ryan Putman	123
			BBa_K844006	Coding	Spider Silk 1x Subunit "W" with Met (ATG) start codon	Federico Carlos Rodriguez	207
			BBa_K844007	Coding	Spider Silk 1x Subunit "F" (Fewest tRNA codon optimized) with Met (ATG) added	Charles Barentine	207
			BBa_K844008	Coding	Spider Silk 1x Subunit "B" (Balanced tRNA codon optimized) with Met (ATG) added	Andrea Halling	207
			BBa_K844010	Regulatory	Enhanced tRNA Promoter for "E. coli"	Kathleen Miller	40
			BBa_K844011	Terminator	tRNA Terminator for "E. coli"	Kathleen Miller	15
			BBa_K844012	Generator	tRNA expression cassette for spider silk "F" proteins	Andrea Halling	812
	\square		BBa_K844013	Generator	tRNA expression cassette for spider silk "B" proteins	Ryan Putman	668

Championship A RACHMICHOL High School Outreach

Outreach to High Schools from Utah and Idaho

Discover Biological Engineering

Engineering State

UtahState UNIVERSITY

Acknowledgements

First year we had team members from four different institutions:

Cooper Union, NY

UtahState University

Logan High School, UT Utah State University

-Gold medal -Regional Finalist -Won award Best Engineered BioBrick Device -Selected to World Championships at MIT -Won award for Best Manufacturing Project

Sponsors

PBI Pressure BioSciences Inc.

INTEGRATED DNA TECHNOLOGIES

GenScript

Transforming Biology Research

Synthetic Bio-Manufacturing Center

> UtahStateUniversity COLLEGE OF ENGINEERING

Sustainable Waste-to-Bioproducts Engineering Center

45

Questions?

